

HI-Tech Technologies For Green Houses

ROBOTIC PESTICIDE APPLICATOR

To avoid the complete exposure and drudgery of the operator, a telerobotic target-specific pesticide applicator was designed and developed for real-time application of chemicals based on the presence of a canopy in the greenhouse and open field. It mainly consists of a prime mover, an ultrasonic sensor-based target-specific spraying system and an electronic control unit for both prime mover navigation and spraying system. It can be teleoperated from outside the greenhouse by an operator sitting in a safe environment through real-time video accomplished on display at the operator's workplace.

The battery (Pair of 24 V 42 Ah DC Batteries) is the main power source. Two number of motors (24V DC 250W) are used for propelling the machine. A transmitter (9-channel) with a receiver (10-channel) was used for the control of the robot by the operator. In the spraying system, ultrasonic sensors are used to detect the presence and height of the plant. The sensors help to the microcontroller for actuation of the solenoid valves. The vibration and float sensor detects nozzle clogging and chemical solution status to facilitate refilling. The maximum range of wireless communication between the operator to the robot is about 120m. Robotic sprayer saves around 24% pesticides.

ELECTRIC MULTI-TOOL CAREER

An electric multi-tool carrier is developed for bed forming, spraying, and pollination for critical operations in protected cultivation. The carrier can carry load of 400 kg at 20 km/h off-road and on-road with consistent track width and pneumatic tyre footprint. The minimum turning radius and ground clearance of the carrier is 3.5m and 40cm respectively.

ELECTRIC POLLINATOR FOR GREENHOUSE

Pollinator based on the principle of a pulsating air jet is developed for greenhouses. The optimum conditions for the highest pollination efficiency (83.66%) were achieved with an airflow rate of 1.99 m³/min, a pulsation frequency of 23.50 Hz, and an exposure time of 19.40 seconds.

Authors:

P.K. Sahoo, Satish Devram Lande and Dilip Kushwaha

Compilation & Editing

M.S. Nain, Nafees Ahmad and Pratibha Joshi

For more information, please contact

Head, Division of Agricultural Engineering
ICAR-Indian Agricultural Research Institute, Pusa,
New Delhi

Ph. No. 011-25842294, Email: head_engg@iari.res.in

Published by:

Publication Committee, Pusa Krishi Vigyan Mela
(PKVM) 2025

ICAR-Indian Agricultural Research Institute,
New Delhi

Printed at

MS Printers, C-108/1, Back Side, Naraina Industrial
Area, Phase-1, New Delhi-110 028,
Phone No. 011-45104606

ग्रीनहाउस के लिए उच्च तकनीक प्रौद्योगिकियां

रोबोटिक कीटनाशक एप्लीकेटर

ऑपरेटर के पूर्ण जोखिम और थकान से बचने के लिए, ग्रीनहाउस और खुले मैदान में एक छतरी की उपस्थिति के आधार पर रसायनों के वास्तविक समय के अनुप्रयोग के लिए एक टेलीरोबोटिक लक्ष्य-विशिष्ट कीटनाशक एप्लीकेटर डिजाइन और विकसित किया गया था। इसमें मुख्य रूप से एक प्राइम मूवर, एक अल्ट्रासोनिक सेंसर-आधारित लक्ष्य-विशिष्ट छिड़काव प्रणाली और प्राइम मूवर नेविगेशन और छिड़काव प्रणाली दोनों के लिए एक इलेक्ट्रॉनिक नियंत्रण इकाई शामिल है। इसे ऑपरेटर द्वारा ग्रीनहाउस के बाहर से सुरक्षित वातावरण में बैठकर ऑपरेटर के कार्यस्थल पर प्रदर्शित वास्तविक समय के वीडियो के माध्यम से टेलीऑपरेट किया जा सकता है।

बैटरी (24 V 42 Ah DC बैटरियों का पेयर) मुख्य ऊर्जा का स्रोत है। मशीन को चालित करने के लिए दो मोटर्स (24V DC 250W) का उपयोग किया जाता है। ऑपरेटर द्वारा रोबोट के नियंत्रण के लिए एक ट्रांसमीटर (9-चैनल) और एक रिसीवर (10-चैनल) का उपयोग किया गया था। छिड़काव प्रणाली में, पौधे की उपस्थिति और ऊंचाई का पता लगाने के लिए अल्ट्रासोनिक सेंसर का उपयोग किया जाता है। ये सेंसर माइक्रोकंट्रोलर को सोलिनॉयड वाल्व को सक्रिय करने में मदद करते हैं। कंपन और फ्लोट सेंसर नोजल क्लॉगिंग और रासायनिक धोल की स्थिति का पता लगाता है ताकि रिफिलिंग की सुविधा मिल सके। ऑपरेटर और रोबोट के बीच वायरलेस संचार की अधिकतम सीमा लगभग 120 मीटर है। रोबोटिक स्प्रेयर लगभग 24% कीटनाशकों की बचत करता है।

इलेक्ट्रिक मल्टी-टूल कैरियर

एक इलेक्ट्रिक मल्टी-टूल कैरियर विकसित किया गया है, जो संरक्षित खेती में महत्वपूर्ण कार्यों जैसे बेड फॉर्मिंग, स्प्रेइंग और परागण के लिए उपयोगी है। यह कैरियर लगातार ट्रैक चौड़ाई और न्यूमेटिक टायर फुटप्रिंट के साथ 20 किमी/घंटा की गति से ऑफ-रोड और ऑन-रोड पर 400 किलोग्राम का भार ले जा सकता है। कैरियर का न्यूनतम टर्निंग रेडियस और ग्राउंड क्लीयरेंस क्रमशः 3.5 मीटर और 40 सेंटीमीटर है।

ग्रीनहाउस के लिए विद्युत परागणक

परागणक को पल्सेटिंग एयर जेट के सिद्धांत पर आधारित किया गया है, जो ग्रीनहाउस के लिए विकसित किया गया है। सबसे उच्च परागण दक्षता (83.66%) प्राप्त करने के लिए इष्टतम परिस्थितियाँ 1.99 m³/मिनट की एयरफ्लो दर, 23.50 Hz की पल्सेशन आवृत्ति, और 19.40 सेकंड की एक्सपोज़र टाइम के साथ प्राप्त की गई।

लेखक:

पी.के. साहू, सतीश देवराम लांडे एवं दिलीप कुशवाहा

संकलन एवं सम्पादन:

एम. एस. नैन, प्रतिभा जोशी एवं राहुल सिंह

प्रकाशन:

प्रकाशन समिति, पूसा कृषि विज्ञान, मेला-2025

भा.कृ.अ.प.-भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली-110 012

अधिक जानकारी के लिए कृपया संपर्क करें:

अध्यक्ष, कृषि अभियांत्रिकी संभाग

भा. कृ. अनु. प. - भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली - 110012

फोन नं.: +91-11-25842294; ई-मेल: head_engg@iari.res.in

मुद्रित:

एमएस प्रिंटर्स, सी-108/1, बेक साइड, नारायण औद्योगिक क्षेत्र, फेझ-1,

नई दिल्ली-110 028, फोन: 011-45104606